Normalisation by Completeness with Heyting Algebras

نویسندگان

  • Gaëtan Gilbert
  • Olivier Hermant
چکیده

Usual normalization by evaluation techniques have a strong relationship with completeness with respect to Kripke structures. But Kripke structures is not the only semantics that ts intuitionistic logic: Heyting algebras are a more algebraic alternative. In this paper, we focus on this less investigated area: how completeness with respect to Heyting algebras generate a normalization algorithm for a natural deduction calculus, in the propositional fragment. Our main contributions is that we prove in a direct way completeness of natural deduction with respect to Heyting algebras, that the underlying algorithm natively deals with disjunction, that we formalized those proofs in Coq, and give an extracted algorithm.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Normalization by Completeness with Heyting Algebras

Usual normalization by evaluation techniques have a strong relationship with completeness with respect to Kripke structures. But Kripke structures is not the only semantics that ts intuitionistic logic: Heyting algebras are a more algebraic alternative. In this paper, we focus on this less investigated area: how completeness with respect to Heyting algebras generate a normalization algorithm fo...

متن کامل

Dually quasi-De Morgan Stone semi-Heyting algebras II. Regularity

This paper is the second of a two part series. In this Part, we prove, using the description of simples obtained in Part I, that the variety $mathbf{RDQDStSH_1}$ of regular dually quasi-De Morgan Stone semi-Heyting algebras of level 1 is the join of the variety generated by the twenty 3-element $mathbf{RDQDStSH_1}$-chains and the variety of dually quasi-De Morgan Boolean semi-Heyting algebras--...

متن کامل

Dually quasi-De Morgan Stone semi-Heyting algebras I. Regularity

This paper is the first of a two part series. In this paper, we first prove that the variety of dually quasi-De Morgan Stone semi-Heyting algebras of level 1 satisfies the strongly blended $lor$-De Morgan law introduced in cite{Sa12}. Then, using this result and the results of cite{Sa12}, we prove our main result which gives an explicit description of simple algebras(=subdirectly irreducibles) ...

متن کامل

On Heyting algebras and dual BCK-algebras

A Heyting algebra is a distributive lattice with implication and a dual $BCK$-algebra is an algebraic system having as models logical systems equipped with implication. The aim of this paper is to investigate the relation of Heyting algebras between dual $BCK$-algebras. We define notions of $i$-invariant and $m$-invariant on dual $BCK$-semilattices and prove that a Heyting semilattice is equiva...

متن کامل

Similarity DH-Algebras

In  cite{GL}, B. Gerla and I. Leuc{s}tean introduced the notion of similarity on MV-algebra. A similarity MV-algebra is an MV-algebra endowed with a binary operation $S$ that verifies certain additional properties. Also, Chirtec{s} in cite{C}, study the notion of similarity on L ukasiewicz-Moisil algebras. In particular, strong similarity L ukasiewicz-Moisil algebras were defined. In this paper...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2015